Localized Molecular Orbitals for Polyatomic Molecules. IV, Large Boron Hydrides

D. A. Dixon, D. A. Kleier, T. A. Halgren, and W. N. Lipscomb*
Contribution from the Department of Chemistry, Harvard University, Cambridge. Massachusetts 02138. Received May 27, 1975

Abstract

Wave functions calculated in the approximation of partial retention of diatomic differential overlap (PRDDO) are presented for $\mathrm{B}_{13} \mathrm{H}_{19}, \mathrm{~B}_{14} \mathrm{H}_{20}, \mathrm{~B}_{16} \mathrm{H}_{20}, n-\mathrm{B}_{18} \mathrm{H}_{22}, i-\mathrm{B}_{18} \mathrm{H}_{22}, \mathrm{~B}_{20} \mathrm{H}_{16}, \mathrm{~B}_{20} \mathrm{H}_{18}{ }^{2-}$, and photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. The wave functions are analyzed in terms of the ground state charge distribution. Atomic and group charges, inner-shell eigenvalues on boron, dipole moments, and ionization potentials are presented for these molecules. We make and then compare reactivity predictions for electrophilic and nucleophilic attack based on group charges and inner-shell eigenvalues, neglecting steric effects, orbital control, and complex pathways. Localized molecular orbitals (LMO's) obtained using the Boys criterion are reported. These LMO structures are compared with the LMO structures obtained for the B_{8} or B_{10} molecules that join together to give the larger molecule. The effects of the bonding in the fusion or bridge region are examined.

The boron hydrides have been studied extensively by various theoretical techniques. ${ }^{1,2}$ In particular, wave functions and related molecular properties of the smaller boranes have been calculated by ab initio SCF methods. ${ }^{2}$ However, due to financial restrictions, $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ are the largest boranes studied so far by ab initio methods. ${ }^{3}$ In order to obtain wave functions for comparable or larger molecules in reasonable computer times, various approximate methods have been developed. ${ }^{4}$ As judged from a comparison of molecular orbital calculations at several levels of approximation, the PRDDO (partial retention of diatomic differential overlap) method has been shown ${ }^{5}$ to provide results most closely reproducing ab initio results, using either Slater basis sets or STO-3G basis sets. Accordingly, the PRDDO method is employed here to generate the wave functions for all of the molecules discussed below.

Boron hydrides with more than 12 borons are not known to form simple polyhedral structures, due to geometric restrictions; they are essentially composed of molecular fragments which are joined in a number of different ways. The structures of eight large boron hydrides have been determined by x-ray diffraction techniques. ${ }^{6-13}$ Each of these molecules contains at least one B_{8} fragment resembling $\mathrm{B}_{8} \mathrm{H}_{12}$ or B_{10} fragment resembling $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}, \mathrm{B}_{10} \mathrm{H}_{14}$, or $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (Figure 1). Thus, the $\mathrm{B}_{13} \mathrm{H}_{19}{ }^{6}$ molecule (Figure 2) is composed of fused B_{8} and B_{7} fragments, while $B_{14} \mathrm{H}_{20}{ }^{7}$ (Figure 3) is composed of two B_{8} fragments. The $\mathrm{B}_{16} \mathrm{H}_{20}{ }^{8}$ molecule (Figure 4) is composed of a B_{8} fragment and a B_{10} ($\mathrm{B}_{10} \mathrm{H}_{14}$ like) fragment while $n-\mathrm{B}_{18} \mathrm{H}_{22}{ }^{9}$ (Figure 5) and i $\mathrm{B}_{18} \mathrm{H}_{22}{ }^{10}$ (Figure 6) are composed of two $\mathrm{B}_{10}\left(\mathrm{~B}_{10} \mathrm{H}_{14}\right.$ like) fragments. For these molecules we note that fusion of the fragments occurs with loss of two borons. The $\mathrm{B}_{20} \mathrm{H}_{16}{ }^{11}$ molecule (Figure 7) is also composed of two B_{10} fragments bridged together where these fragments resemble $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. The doubly negative ions, $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (Figure 8) and photo$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (Figure 9), are derived from two $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ structures in which boron bridging occurs in the former and hydrogen bridging in the latter.

Nuclear magnetic resonance spectra have been reported for all of these molecules except $\mathrm{B}_{16} \mathrm{H}_{20}$ and $\mathrm{B}_{13} \mathrm{H}_{19}$. The $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-} .14$ photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}, \mathrm{B}_{20} \mathrm{H}_{16},{ }^{16}$ and $\mathrm{B}_{14} \mathrm{H}_{20}{ }^{7}$ spectra support the x -ray results while the spectra of the two $\mathrm{B}_{18} \mathrm{H}_{22}$ isomers ${ }^{17}$ have not been well characterized.

Many of the structurally related large boron hydrides have similar synthetic origins. A brief review of the reactions forming these molecules will help to illustrate this point. $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ was the first of the large boranes to be discovered ${ }^{18}$ and is formed with 95% yield in aqueous solution
by the reaction

$$
2 \mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}+4 \mathrm{Fe}^{3+} \rightarrow \mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}+4 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}
$$

The two $\mathrm{B}_{18} \mathrm{H}_{22}$ isomers ${ }^{17}$ are formed by reaction of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ with acids, $n-\mathrm{B}_{18} \mathrm{H}_{22}$ being the major product and the thermodynamically less stable $i-\mathrm{B}_{18} \mathrm{H}_{22}$, the minor product. Photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ is formed ${ }^{20}$ by photolysis under a mercury lamp of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ in acetonitrile solution. The $\mathrm{B}_{20} \mathrm{H}_{16}$ molecule has been prepared ${ }^{16 a}$ from $\mathrm{B}_{10} \mathrm{H}_{14}$ and H_{2} in an electric discharge, and is also produced in the chain reaction which takes place upon laser excitation of a vibration of $\mathrm{B}_{2} \mathrm{H}_{6} .{ }^{21}$ The $\mathrm{B}_{16} \mathrm{H}_{20}$ molecule is produced ${ }^{22}$ in small amounts (7%) from the pyrolysis of $\mathrm{B}_{9} \mathrm{H}_{13} \mathrm{~S}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~B}_{10} \mathrm{H}_{14}$ and $n-\mathrm{B}_{18} \mathrm{H}_{22}$ being the major products. The $\mathrm{B}_{14} \mathrm{H}_{20}$ molecule is produced ${ }^{7}$ by the reaction of $\mathrm{B}_{8} \mathrm{H}_{12}$ with $\mathrm{KB}_{6} \mathrm{H}_{9}$ in diethyl ether, followed by removal of solvent and treatment with $\mathrm{HCl} ; \mathrm{B}_{16} \mathrm{H}_{20}$ is also found as a product of this reaction. The $\mathrm{B}_{13} \mathrm{H}_{19}$ molecule is a minor product ${ }^{23}$ in the pyrolysis of $\mathrm{B}_{6} \mathrm{H}_{10}$.

The molecules $\mathrm{B}_{16} \mathrm{H}_{20},{ }^{22} n-\mathrm{B}_{18} \mathrm{H}_{22}$, and $i-\mathrm{B}_{18} \mathrm{H}_{22}{ }^{17}$ are all strong acids. By analogy to $\mathrm{B}_{10} \mathrm{H}_{14}$ it is presumed that certain bridge protons are most acidic. The reactions of the $\mathrm{B}_{18} \mathrm{H}_{22}$ isomers have been studied in some detail ${ }^{17}$ but little work has been reported for the other molecules discussed here.

In order to compare the bonding in these molecules, we examine their localized molecular orbitals ${ }^{24}$ (LMO's). These LMO's are generated by a unitary transformation which is applied to the SCF canonical molecular orbitals. ${ }^{25}$ The two most commonly used criteria for choosing this transformation are those of Boys ${ }^{26}$ and of Edmiston and Ruedenberg ${ }^{27}$ (ER). Computationally, application of the Boys and ER criteria are N^{3} and N^{5} processes, respectively, where N is the number of occupied orbitals. Except for well-noted differences, ${ }^{25}$ the LMO's generated using the Boys criterion are essentially qualitatively the same as those obtained using the ER criterion, but application of the Boys criterion is much more economical.

LMO's are especially useful for making comparisons within a series of structurally related molecules ${ }^{24}$ since they provide a means for identifying bonding characteristics which are transferable from small molecules to larger molecules in the series. The large molecules studied here are particularly interesting in this respect because they are composed of fragments which are similar in geometry to several smaller boron hydrides.

We have obtained PRDDO wave functions for the eight large boron hydrides: $\mathrm{B}_{13} \mathrm{H}_{19}, \mathrm{~B}_{14} \mathrm{H}_{20}, \mathrm{~B}_{16} \mathrm{H}_{20}, n-\mathrm{B}_{18} \mathrm{H}_{22}$,

Figure 1, Localized valence structures for the basic fragment type molecules. Bonding conventions from ref 24 are (1) -0.15 to 0.25 e, (2) -0.25 to 0.35 e , (3) --0.35 to 0.50 e , (4) - population greater than 0.50 e: (a) $\mathrm{B}_{8} \mathrm{H}_{12}$; (b) $\mathrm{B}_{10} \mathrm{H}_{14}$; (c) $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$; (d) $4.4,3$ structure of $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$; (c) $3,5,3$ structure of $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$.
i - $\mathrm{B}_{18} \mathrm{H}_{22}, \quad \mathrm{~B}_{20} \mathrm{H}_{16}, \mathrm{~B}_{20} \mathrm{H}_{18}{ }^{2-}$, and photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. We make predictions of the favored sites of electrophilic and nucleophilic attack based on charges and inner-shell eigenvalues on boron. ${ }^{24}$ The Boys LMO's are compared with those previously obtained for the smaller fragments. ${ }^{24,29}$ Transferability is also discussed.

Calculations and Geometry

The SCF calculations were done with use of the all-electron PRDDO method ${ }^{5}$ which employs a minimum basis set of Slater orbitals. Exponents were taken from optimized minimum basis set results for $\mathrm{B}_{2} \mathrm{H}_{6}{ }^{30}$ [$\mathrm{B}(1 \mathrm{~s}), 4.68$; $\mathrm{B}(2 \mathrm{~s})$, $\left.1.443 ; \mathrm{B}(2 \mathrm{p}), 1.477 ; \mathrm{H}_{\mathrm{t}}(1 \mathrm{~s}), 1.147 ; \mathrm{H}_{\mathrm{b}}(1 \mathrm{~s}), 1.209\right]$. Geometries (in Table IV) were based upon the crystal structure results, except that all terminal hydrogen positions were idealized to $1.19 \AA .{ }^{31}$ The coordinates for $\mathbf{B}_{13} \mathrm{H}_{19}$ were taken directly from the crystal structure. ${ }^{6}$ The coordinates for $\mathrm{B}_{14} \mathrm{H}_{20}$ were taken from the crystal structure, ${ }^{7}$ and then averaged to $C_{2 v}$ symmetry. For $\mathrm{B}_{16} \mathrm{H}_{20},{ }^{8}$ the crystal structure coordinates were used, except that the bridging hydrogen between B_{6} and B_{7} was relocated to a more symmetrical position. The geometry for $i-\mathrm{B}_{18} \mathrm{H}_{22}{ }^{10}$ was generated from the x-ray coordinates for the $\mathrm{B}_{9} \ldots \mathrm{~B}_{18}$ subunit by passing a C_{2} axis through B_{9} and B_{10}. The $n-\mathrm{B}_{18} \mathrm{H}_{22}{ }^{9}$ molecule lies on a center of inversion in the crystal and thus the coordinates used possess C_{i} symmetry. Since $\mathrm{B}_{20} \mathrm{H}_{16}{ }^{11}$ occupies a crystal site having symmetry S_{4}, the coordinates were generated from the x-ray results with this $\overline{4}$ axis. The ion ${ }^{12} \mathrm{~B}_{20} \mathrm{H}_{18}{ }^{2-}$ also occupies a crystal site, at a center of inversion, and hence the coordinates for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ were generated from the crystal structure coordinates for $\mathrm{B}_{1} \ldots \mathrm{~B}_{10}$, giving a molecule in the 1,10 apex form. For photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, we generated a molecule with $C_{2 h}$ symmetry by using an idealized $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ geometry ${ }^{3}$ for the B_{10} fragments. The bridge

a.) $\mathrm{B}_{13} \mathrm{H}_{19}$

b.) $\mathrm{B}_{9} \mathrm{H}_{15}$

c.) $\mathrm{B}_{7} \mathrm{H}_{13}$

Figure 2. Localized valence structure for $\mathrm{B}_{13} \mathrm{H}_{19}$: (a) $\mathrm{B}_{13} \mathrm{H}_{19}$; (b) $\mathrm{B}_{9} \mathrm{H}_{15}$ showing its difference from $\mathrm{B}_{13} \mathrm{H}_{19}$; (c) $\mathrm{B}_{7} \mathrm{H}_{13}$, the valence structure of a postulated boron hydride. Three-dimensional drawing for $\mathrm{B}_{13} \mathrm{H}_{19}$ is in ref 6 .

Figure 3. Localized valence structure for $\mathrm{B}_{14} \mathrm{H}_{20}$. Three-dimensional drawing is in ref 7 .
hydrogens together with the B_{10} fragments were located in the molecule using average angles and distances from the crystal structure. ${ }^{13}$ In order to ascertain how this molecular structure compares with that from the crystal structure, we superimposed the coordinates for the borons in the idealized $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ onto the crystal structure coordinates of the B_{1} ... B_{10} half of photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$; after suitable rotations, maximum coincidence was found to yield an rms deviation in coordinates of $0.13 \mathrm{au} .{ }^{32}$ Computing times on an IBM $360 / 91$ are 126 s for $\mathrm{B}_{13} \mathrm{H}_{19}, 189 \mathrm{~s}$ for $\mathrm{B}_{14} \mathrm{H}_{20}, 220 \mathrm{~s}$ for $\mathrm{B}_{16} \mathrm{H}_{20}, 314 \mathrm{~s}$ for $n-\mathrm{B}_{18} \mathrm{H}_{22}$ and $i-\mathrm{B}_{18} \mathrm{H}_{22}, 391 \mathrm{~s}$ for $\mathrm{B}_{20} \mathrm{H}_{16}$, and 430 s for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ and photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$.

Canonical Molecular Orbital Results

The results of the energy analysis are given in Table I along with the highest occupied MO (HOMO) and lowest

a.) $\mathrm{B}_{16} \mathrm{H}_{20}$

b.) $\mathrm{B}_{10} \mathrm{H}_{13}^{-}$

Figure 4. Localized valence structure for $\mathrm{B}_{16} \mathrm{H}_{20}$ and the related ion $\mathrm{B}_{10} \mathrm{H}_{13^{-}}$: (a) $\mathrm{B}_{16} \mathrm{H}_{20}$; (b) $\mathrm{B}_{10} \mathrm{H}_{13^{-}}$. Three-dimensional drawing for $\mathrm{B}_{16} \mathrm{H}_{20}$ is in ref 8 .

Figure 5, Localized valence structure for n - $\mathrm{B}_{18} \mathrm{H}_{22}$. Three-dimensional drawing is in ref 9 .

Figure 6, Localized valence structure for $i-\mathrm{B}_{18} \mathrm{H}_{22}$. Three-dimensional drawing is in ref 10 .
unoccupied MO (LUMO) eigenvalues and the dipole moments. We find that $i-\mathrm{B}_{18} \mathrm{H}_{22}$ is more stable than $n-\mathrm{B}_{18} \mathrm{H}_{22}$, contrary to experiment, ${ }^{19}$ but the small energy difference of $10 \mathrm{kcal} / \mathrm{mol}$ could easily be reversed upon geometry optimization. We feel that reasonable agreement with experiment

Figure 7. Localized valence structures for $\mathrm{B}_{20} \mathrm{H}_{16}$ and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. (a) Complete valence structure for $\mathrm{B}_{20} \mathrm{H}_{16}$ showing all bonding. (b) Simplified valence structure for $\mathrm{B}_{20} \mathrm{H}_{16}$ without delocalization arrows but with numbering and charges. (c) Boys LMO's for $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$. (d) Topological structure for $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ with open three-center $\mathrm{B}-\mathrm{B}-\mathrm{B}$ bond.

Figure 8. Localized valence structure for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$.
is nevertheless obtained, because the experimental difference is only a few kilocalories per mole. For the isomers of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ we find that the photoisomer is calculated to be more stable than the normal isomer by $33 \mathrm{kcal} / \mathrm{mol}$, Experimental evidence ${ }^{20}$ suggests the opposite order of stability, since photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ is converted to $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ by heating at $100^{\circ} \mathrm{C}$ for 36 h . Again, these results cannot be used to
Table I. Energy Analysis ${ }^{a}$

	$\mathrm{B}_{13} \mathrm{H}_{19}$	$\mathrm{B}_{14} \mathrm{H}_{20}$	$\mathrm{B}_{16} \mathrm{H}_{20}$	$n \cdot \mathrm{~B}_{18} \mathrm{H}_{22}$	$i \cdot \mathrm{~B}_{18} \mathrm{H}_{22}$	$\mathrm{B}_{20} \mathrm{H}_{16}$	$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$	Photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$
Nuclear repulsion energy	631.847	714.334	858.238	1043.386	1051.052	1182.476	1121.587	1148.232
Kinetic energy	331.852	356.844	406.361	456.698	4561.763	502.685	504.943	505.997
Nuclear attraction energy	-2023.822	-2245.571	-2647.898	-3133.454	-3148.699	-3518.283	-3438.988	-3492.798
Electron repulsion energy	728.580	817.570	977.025	1176.579	1184.077	1330.184	1308.438	1334.600
Total energy	-331.544	-356.823	-406.274	-456.791	-456.807	-502.937	-504.020	-503.968
Virial ratio ($-E / T$)	0.9991	0.9999	0.9998	1.002	1.0001	1.0005	0.9982	0.9960
Highest occupied ${ }^{h}$ MO eigenvalue	-0.333	-0.361	-0.381	-0.371	-0.393	-0.430	-0.082	-0.085
Lowest unoccupied MO eigenvalue	0.085	0.028	0.035	0.010	0.018	-0.007 (2)	0.422	0.311
Dipole moment ${ }^{\text {c }}$	4.45	6.20	2.63	d	1.56	d	e	e

photo- $\mathrm{B}_{20} \mathrm{H}_{18}=$
Figure 9, Localized valence structure for photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$.
predict the order of stability without geometry optimization.

The HOMO eigenvalues of the $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ ions are bound by more than 2 eV . As shown previously, only when the molecule becomes sufficiently large are the HOMO eigenvalues negative for dinegative boron ions at the minimum basis set level. We also note that the LUMO eigenvalue is very close to zero for all of the nonionic molecules, and for the large $\mathrm{B}_{20} \mathrm{H}_{16}$ molecule the degenerate LUMO pair is actually negative. For these large molecules, we then would expect electron addition to occur to form negative anions. As the number of heavy atoms in the molecule is increased, the accumulation of nuclear charge allows these large molecules to stabilize excess negative charge as compared with the lesser accumulation in smaller molecules.

Extensive use of static reactivity indices has been made in predicting the relative orders of electrophilic and nucleophilic attack in boron hydrides. ${ }^{3,24}$ We have previously discussed such a treatment in some detail ${ }^{24}$ and now apply it to the prediction of reactivity sites for the molecules in the present paper. We use inner-shell eigenvalues and group charges (Table II) as our major criteria for predicting the sites of attack. In order to choose one site over another, we shall insist upon a difference in inner-shell eigenvalue of at least 0.02 au and a difference in group charge of at least 0.02 to 0.03 e . The more positive eigenvalues and more negative group charges correlate with sites at which electrophilic attack tends to occur while negative eigenvalues and positive group charges correlate nucleophilic attack at that site.

In general, inner-shell eigenvalue and group charge predictions correlate extremely well with one another. However, for $\mathrm{B}_{13} \mathrm{H}_{19}$, this correlation is not as good. The most probable sites for electrophilic attack in this molecule are predicted to be 2 and 4 by both inner-shell eigenvalue and group charge. However, no simple prediction of the remaining order can be made based on our criteria, and a single choice as to the site of nucleophilic attack is not yet possible. The region of the molecule containing borons 3,4 , and 9 should be more susceptible to electrophilic attack according to our criteria, while the regions containing borons 11 , 12 , and 13 and boron 7 should be more susceptible to nucleophilic attack. The latter regions have most of the bridge hydrogens; we have previously predicted ${ }^{24}$ that nucleophilic attack should occur at boron sites having bridge hydrogens.

In the series of molecules containing $\mathrm{B}_{8} \mathrm{H}_{12}$ fragments, we noted that the predicted susceptibility of 4 and 5 to electrophilic attack increases markedly when the $\mathrm{B}_{4}-\mathrm{H}_{\mathrm{b}}-\mathrm{B}_{5}$ bridge hydrogen is replaced by either a pair of terminal hydrogens as in $\mathrm{B}_{8} \mathrm{H}_{13}-$ or by the $\mathrm{H}-\mathrm{BH}_{2}-\mathrm{H}$ bridging group as in $\mathrm{B}_{9} \mathrm{H}_{15} .{ }^{24}$ In $\mathrm{B}_{13} \mathrm{H}_{19}$, the B_{7} fragment replaces the bridge hydrogen in $\mathrm{B}_{8} \mathrm{H}_{12}$ but 4 and 5 now have different environments. Boron 4 in $\mathrm{B}_{13} \mathrm{H}_{19}$ is strongly bonded to a boron in the B_{7} fragment and is more susceptible to electro-

Table II. PRDDO-SCF lnner-Shell Eigenvalues, Atomic Charges, and Group Charges

Molecule	Atom ${ }^{\text {a }}$	Eigenvalue ${ }^{b}$	Atomic charge ${ }^{\text {c }}$	Group charge ${ }^{c}$
$\mathrm{B}_{13} \mathrm{H}_{19}$	2	-7.542	-0.08	-0.15
	4	-7.526	-0.01	-0.13
	10	-7.571	-0.06	-0.12
	3	-7.578	0.00	-0.04
	9	-7.603	0.02	-0.04
	1	-7.594	0.06	0.00
	6	-7.612	0.05	0.01
	8	-7.642	0.05	0.05
	11	-7.657	0.04	0.05
	12	-7.681	0.07	0.06
	13	-7.671	0.08	0.08
	5	-7.648	0.08	0.10
	7	-7.667	0.12	0.12
$\mathrm{B}_{14} \mathrm{H}_{20}$	2(2')	-7.575	-0.06	-0.12
	4(5)	-7.587	-0.02	-0.04
	$1\left(1{ }^{\prime}\right)$	-7.602	0.02	-0.02
	$3\left(3^{\prime}, 6,6^{\prime}\right)$	-7.636	0.05	0.01
	$7\left(7^{\prime}, 8,8^{\prime}\right)$	-7.694	0.10	0.08
$\mathrm{B}_{16} \mathrm{H}_{20}$	2	-7.564	-0.05	-0.12
	12	-7.576	-0.05	-0.12
	4	-7.585	0.00	-0.10
	1	-7.589	0.00	-0.06
	16	-7.609	-0.02	-0.05
	13	-7.616	-0.02	-0.04
	3	-7.601	-0.05	-0.02
	7	-7.620	0.03	-0.01
	5	-7.635	0.06	0.02
	10	-7.614	0.03	0.03
	9	-7.634	0.01	0.03
	11	-7.645	0.09	0.04
	8	-7.649	0.09	0.05
	6	-7.671	0.10	0.09
	14	-7.680	0.10	0.12
	15	-7.680	0.12	0.13
$n-\mathrm{B}_{18} \mathrm{H}_{22}$	2(12)	-7.573	-0.04	-0.12
	4(14)	-7.608	0.02	-0.07
	(11)	-7.602	0.01	-0.05
	3(13)	-7.611	0.02	-0.04
	5(15)	-7.632	0.03	-0.01
	$9(10)$	-7.674	0.04	0.04
	7 (17)	-7.637	0.03	0.05
	8(18)	-7.654	0.06	0.11
	6(16)	-7.683	0.13	0.13
$n-\mathrm{B}_{18} \mathrm{H}_{22}$	2(12)	-7.573	-0.04	-0.12
	4(14)	-7.613	0.01	-0.07
	3(13)	-7.603	0.00	-0.05
	1(11)	-7.608	0.03	-0.02
	7 (17)	-7.640	0.04	0.00
	8(18)	-7.645	0.03	0.00
	5(15)	-7.630	0.04	0.02
	10	-7.656	0.07	0.07
	6(16)	-7.683	0.14	0.14
	9	-7.714	0.14	0.14
$\mathrm{B}_{20} \mathrm{H}_{16}$	$1(2,3,4)$	-7.603	0.00	-0.07
	$5(6,7,8)$	-7.622	0.03	-0.03
	17(18, 19, 20)	-7.679	0.00	0.00
	$13(14,15,16)$	-7.659	0.09	0.04
	9(10, 11, 12)	-7.659	0.10	0.05
$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$	$1\left(1{ }^{\prime}\right)$	-7.244	-0.08	-0.22
	$7\left(7^{\prime}\right)$	-7.274	-0.10	-0.22
	3(3')	-7.282	0.01	-0.13
	4(4')	-7.290	0.02	-0.10
	2(2')	-7.292	0.05	-0.10
	6(6')	-7.297	0.01	-0.09
	$10\left(10^{\prime}\right)$	-7.302	-0.04	-0.09
	5(5')	-7.287	0.04	-0.08
	8(8)	-7.294	0.03	-0.07
	$9\left(9^{\prime}\right)$	-7.372	0.10	0.10
photo-$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$	$1\left(1^{\prime}, 10,10^{\prime}\right)$	-7.251	-0.04	-0.18
	4(4, $\left.{ }^{\prime}, 8,8\right)$	-7.273 -7.284	-0.01	-0.16
	3(3', 9, 9^{\prime})	-7.294	0.02	-0.10
	$2\left(2^{\prime}, 6,6^{\prime}\right)$	-7.363	0.06	-0.08

[^0] are atomic units (au). charges are in electrons (e).
philic attack. However, a terminal hydrogen on boron 5 is converted to a bridge hydrogen and boron 5 gains two near boron neighbors as a consequence of the addition of the B_{7} fragment. Boron 5 is expected to be more susceptible to electrophilic attack than nucleophilic attack both here and in $\mathrm{B}_{8} \mathrm{H}_{12}$.

For $\mathrm{B}_{14} \mathrm{H}_{20}$, extremely good correlation between innershell eigenvalues and group charges is found. We predict that the order for electrophilic attack is $2>4>1>3>7$. This order is identical with that predicted ${ }^{24}$ for $\mathrm{B}_{9} \mathrm{H}_{15}$ and $\mathrm{B}_{8} \mathrm{H}_{13}{ }^{-}$. Again we point out that 4 is predicted to be much more susceptible to electrophilic attack than in $\mathrm{B}_{8} \mathrm{H}_{12}$, and in $\mathrm{B}_{14} \mathrm{H}_{20}$ two borons are bound to 4 instead of a bridge hydrogen as in $\mathrm{B}_{8} \mathrm{H}_{12}$.

For $\mathrm{B}_{16} \mathrm{H}_{20}$, borons $2,12,4$, and 1 are predicted to be the likely sites of electrophilic attack while nucleophilic attack should most likely occur at 6,14 , and 15 . Comparison with $\mathrm{B}_{8} \mathrm{H}_{12}$ and $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{24}$ shows that the most probable sites of electrophilic and nucleophilic attack are retained in the corresponding fragments of $\mathrm{B}_{16} \mathrm{H}_{20}$ except that 10 has become much less susceptible to nucleophilic attack. Comparison with $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$shows ${ }^{24}$ that 10 is much less susceptible to electrophilic attack in $\mathrm{B}_{16} \mathrm{H}_{20}$ than in $\mathrm{B}_{10} \mathrm{H}_{13}$ - due, in part, to its being bound to two extra borons in the larger molecule. Boron 9 occupies an intermediate position in that it is susceptible to neither sort of attack in either $\mathrm{B}_{16} \mathrm{H}_{20}$ or $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$, while the rest of the sites in $\mathrm{B}_{16} \mathrm{H}_{20}$ are very similar to those in $\mathrm{B}_{10} \mathrm{H}_{13}$.

We also have compared the B_{8} fragment in $\mathrm{B}_{16} \mathrm{H}_{20}$ with those in several other systems. Borons 13 and 16 are quite susceptible to electrophilic attack in $\mathrm{B}_{16} \mathrm{H}_{20}$, just as in $\mathrm{B}_{8} \mathrm{H}_{12}$. On the other hand, 9 and 10 are quite different from the corresponding sites in most other B_{8} molecules, more closely resembling 4 in $\mathrm{B}_{8} \mathrm{H}_{12}$ and 5 in $\mathrm{B}_{13} \mathrm{H}_{19}$ in not being susceptible to electrophilic attack. Borons 5 and 6 in $\mathrm{B}_{16} \mathrm{H}_{20}$ are also similar to 5 in $\mathrm{B}_{13} \mathrm{H}_{19}$ because they too do not possess terminal hydrogens.

The reactivity orders for electrophilic attack for n $\mathrm{B}_{18} \mathrm{H}_{22}$ and $i-\mathrm{B}_{18} \mathrm{H}_{22}$ are predicted to be $2>4,3,1>5,7$ $>9>8>6$ and $2>4,3,1>7,8,5>10>6$, 9 , respectively. (The numbering in the $\mathrm{B}_{18} \mathrm{H}_{22}$ molecules is not identical, because borons 8 and 10 occupy different sites in the two molecules, as shown in Figures 5 and 6.) In both molecules, 2 is the site predicted to be most susceptible to electrophilic attack while 6 is predicted to be most susceptible to nucleophilic attack, just as found previously for $\mathrm{B}_{10} \mathrm{H}_{14}$. As in $\mathrm{B}_{10} \mathrm{H}_{14}$, atoms not attached to bridge hydrogens are the next most susceptible to electrophilic attack. A consequence of replacing the bridge hydrogen with a boron group is to lower the susceptibility of 4 to electrophilic attack.

In $n-\mathrm{B}_{18} \mathrm{H}_{22}$, we note that 8 is more susceptible to nucleophilic attack than is boron 9 , which is located in the fusion region. In $i-\mathrm{B}_{18} \mathrm{H}_{22}$, this trend is reversed and the fusion borons 9 and 10 are more susceptible to nucleophilic attack than is 8 . In $i-\mathrm{B}_{18} \mathrm{H}_{22}$, the fusion boron 9 which has two bridge hydrogens is more susceptible to nucleophilic attack than is the fusion boron 10 which has no bridge hydrogens. Because 10 has no terminal hydrogens, it may also be less susceptible to nucleophilic attack for steric reasons.

Experimentally, base-catalyzed D exchange occurs in n $\mathrm{B}_{18} \mathrm{H}_{22}$ at two terminal hydrogens. We predict the equivalent sites 6 and 16 (the most positively charged) to be the most likely sites of exchange, in agreement with results obtained by Hawthorne and co-workers. ${ }^{17}$ Electrophilic D exchange occurs at three pairs of positions, with one pair exchanging the most rapidly. We predict this pair to be 2 and 12, as did Hawthorne and co-workers, ${ }^{17}$ who predicted the other two pairs to be 4 and 14 and 1 and 11 or 3 and 13 based on comparison with $\mathrm{B}_{10} \mathrm{H}_{14}$ and charge distributions from the counting of topological structures. However, our criteria do not distinguish between these additional sites in
their relative susceptibility to electrophilic attack. It is therefore likely that steric factors may play a role in these displacements.

Hawthorne and co-workers found that nucleophilic substitution does not occur for the isomers of $\mathrm{B}_{18} \mathrm{H}_{22}$ when acetonitrile is employed as the attacking agent. ${ }^{17}$ However, Sneath and Todd ${ }^{33}$ later reported nucleophilic substitution of cyclohexyl isocyanide with i - $\mathrm{B}_{18} \mathrm{H}_{22}$ and of pyridine with $n-\mathrm{B}_{18} \mathrm{H}_{22}$. In $n-\mathrm{B}_{18} \mathrm{H}_{22}$, two pyridines are added with loss of two hydrogens, and we expect that this substitution, in analogy with substitution in $\mathrm{B}_{10} \mathrm{H}_{14}$, should occur at 6 and 16 . In $i-\mathrm{B}_{18} \mathrm{H}_{22}$, the addition compound $\mathrm{B}_{18} \mathrm{H}_{20} \mathrm{CNH}_{2} \mathrm{C}_{6} \mathrm{H}_{11}$ is formed but we cannot predict the site for substitution except that it should occur at $6(16)$ or 9 . The charge criteria are ambiguous but the inner-shell eigenvalue criterion does favor 9. Boron 9 is not completely blocked sterically because it has two bridge hydrogens which might open upon nucleophilic substitution. Still, it is clear experimentally that the $\mathrm{B}_{18} \mathrm{H}_{22}$ isomers are less susceptible to nucleophilic attack than is $\mathrm{B}_{10} \mathrm{H}_{14}$.

For $\mathrm{B}_{20} \mathrm{H}_{16}$, we predict 1 to be the most probable site for electrophilic attack, while 5 is the next most likely site. The order for nucleophilic attack is complicated somewhat because the four equivalent borons (17-20) do not possess hydrogens. Borons 9 and 13, which have terminal hydrogens, are clearly favored as the sites for nucleophilic attack by the charge criterion, but the eigenvalue criterion favors 17, which carries no terminal hydrogen. Borons 9 and 13 should be equivalent in the presumed $D_{2 d}$ structure of the free molecule even though they are not equivalent in the crystal structure due to the S_{4} symmetry; they do show equivalent charges and eigenvalues as expected for a $D_{2 d}$ structure. The parent fragment for $\mathrm{B}_{20} \mathrm{H}_{16}$ is $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2}$. Boron 6 in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (equivalent to 17 in $\mathrm{B}_{20} \mathrm{H}_{16}$) is most susceptible to electrophilic attack while 1 in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ is the next most susceptible. ${ }^{24}$ Terminal hydrogens on 17 are not present in $\mathrm{B}_{20} \mathrm{H}_{16}$, and thus the emergence of 1 as the most probable site for electrophilic attack is reasonable, because it still has a terminal hydrogen. Boron 5 on $\mathrm{B}_{20} \mathrm{H}_{16}$ has become much more susceptible to electrophilic attack than is the comparable site, 2 , in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$.

We now compare the isomers of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ with the closo $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ ion, in which electrophilic attack is expected at the apices (1) while nucleophilic attack is expected at the equatorial borons (2). ${ }^{3}$ The charge and eigenvalue criteria agree that electrophilic attack should occur in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ at 1 and 7 , while nucleophilic attack should occur at 9 . Thus, for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, the apex not involved in bridging is one of the predicted sites of electrophilic attack, while the apex involved in the bridging is of intermediate reactivity. Even though 7 is an "equatorial" atom, it has a unique position opposite 9 and has become an important site of electrophilic attack, while 9 , which is involved in bridging, has been singled out as the dominant site for nucleophilic attack.

In photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, electrophilic attack should occur at 1 while nucleophilic attack should occur at 2. As in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, the bridging borons which have no terminal hydrogens are expected to be the most susceptible to nucleophilic attack even though the bridging is quite different in the two molecules.

Localized Molecular Orbitals

Method. In previous work, we have discussed the procedures for obtaining Boys LMO's in some detail. ${ }^{24,25}$ Briefly, we perform a unitary transformation on the canonical molecular orbitals (CMO) which maximizes D, the sum of squares (SOS),

$$
D=\sum_{i=1}^{n}\left\langle\phi_{i}\right| \vec{r}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \vec{r}\left|\phi_{i}\right\rangle
$$

Table III, Least Well-Determined LMO's

	Highest 2d d^{a} derivative eigenvalue, $\nu_{\text {max }}$	Principally involved LMO's in $\nu_{\text {max }}$ eigenector
Molecule		

[^1]The two-orbital transformation procedure suggested by Edmiston and Ruedenberg ${ }^{27}$ is used to apply the unitary transformation to the occupied molecular orbitals of the determinantal wave function.

Convergence for these molecules is quite slow. Since most localizations are unambiguous after 20 iterations, we report results after 20 iterations unless otherwise noted. In order to examine the uniqueness of the maxima, each localization was repeated at least ten times starting from different sets of MO's generated by a random unitary transformation of the initial CMO's. In order to determine whether the LMO's correspond to a maximum on the SOS surface, we perform a limited second-derivative test ${ }^{25}$ in order to analyze the curvature of the LMO hypersurface. Such a test is of great value in examining whether multiple maxima are present on the surface. A relative maximum is reached on the SOS surface if the gradient vanishes and all eigenvalues of the second-derivative matrix are negative. In those cases (notably photo- $\mathrm{B}_{20} \mathrm{H}_{18^{2-}}$) which are not handled well by the two-orbital transformation procedure, we use a multiorbital transformation procedure designated as the eigenvector procedure. ${ }^{25}$ The eigenvector procedure uses the eigenvector corresponding to the most positive eigenvalue of the second-derivative test to generate the unitary transformation. The largest second-derivative eigenvalues, $\nu_{\text {max }}$, and the LMO pairings principally involved in the corresponding $\nu_{\text {max }}$ eigenvectors are given for the LMO structures in Table III. The $\nu_{\max }$ eigenvectors give the directions of least negative curvature ($\nu_{\text {max }}$) on the SOS surface.
$\mathbf{B}_{13} \mathbf{H}_{19}$. The LMO's for $\mathbf{B}_{13} \mathrm{H}_{19}$ are drawn in Figure 2a using previously described ${ }^{24}$ conventions for drawing the bonds which for convenience are repeated in the legend for Figure 1. Examination of the region of the B_{8} fragment shows at once the similarity to $\mathrm{B}_{8} \mathrm{H}_{12}$ (Figure 1a). The major change in the B_{8} fragment is that the 1-2-3 bond in $\mathrm{B}_{13} \mathrm{H}_{19}$ has more density on 1 than does the analogous bond in $\mathrm{B}_{8} \mathrm{H}_{12}$. The $4-5-1$ bond shows substantial bonding to 1 . Hence this fragment shows bonding more nearly like that in $\mathrm{B}_{8} \mathrm{H}_{12}$ than like that in $\mathrm{B}_{9} \mathrm{H}_{15}$ (Figure 2b), where the bonding to 1 is better represented as delocalization from the $4-5$ two-center bond. The $\nu_{\text {max }}$ eigenvector for $\mathrm{B}_{13} \mathrm{H}_{19}$ (Table

Table IV, Atomic Coordinates

Table IV (Continued)

Atom	x, au	y, au	z, au	Atom	x, au	y, au	z.au
B5	-3.408 54	-3.320 91	0.07108	B2	-1.928 17	0.96136	1.42209
B6	-1.352 04	-5.99206	0.34987	B3	-3.287 73	-2.320 92	1.42209
B7	0.99033	-5.51592	-2.026 15	B4	-6.570 01	-0.961 36	1.42209
B8	2.68454	-2.244 79	-2.335 87	B5	-5.210 45	2.32092	1.42209
B9	1.69492	0.0	0.0	B6	-1.928 17	-0.961 36	-1.42209
B10	-1.69492	-0.000 01	0.00001	B7	-5.210 45	-2.320 92	-1.422 09
B1I	-2.722 88	1.67558	2.69914	B8	-6.570 01	0.96136	-1.422 09
B12	-2.316 75	5.04031	2.60534	B9	-3.287 73	2.32092	-1.422 09
B13	-0.013 57	3.09996	4.06164	BIO	-4.249 09	0.0	-3.484 59
B14	0.18132	0.0	2.88644	BI'	4.24909	0.0	3.48459
B15	-3.40854	3.32091	-0.071 08	B2 ${ }^{\prime}$	1.92817	0.96136	1.42209
B16	-1.352 04	5.99206	-0.349 87	B3'	3.28773	-2.320 92	1.42209
B17	0.99033	5.51592	2.02615	B4'	6.57001	-0.961 36	1.42209
B18	2.68454	2.24479	2.33587	B5 ${ }^{\prime}$	5.21045	2.32092	1.42209
HI	-4.459 11	-0.755 45	-3.79423	B6'	1.92817	-0.961 36	-1.422 09
H2	-3.70831	-6.36818	-3.771 84	$B 7^{\prime}$	5.21045	-2.320 92	-1.42209
H3	0.46130	-3.38167	-6.24235	B8 ${ }^{\prime}$	6.57001	0.96136	-1.42209
H4	0.39427	1.82298	-4.18711	B9 ${ }^{\prime}$	3.28773	2.32092	-1.42209
H5	-5.425 62	-3.33868	1.06677	B10'	4.24909	0.0	-3.484 59
H6	-1.892 63	-7.859 70	1.48127	HI	-4.249 09	0.0	5.73338
H7	2.10407	-7.31922	-2.779 88	H3	-2.474 25	-4.28483	2.15583
H8	4.68116	-2.18776	-3.370 57	H4	-8.53391	-1.77483	2.15583
HII	-4.459 11	0.75545	3.79423	H5	-6.023 92	4.28482	2.15583
H12	-3.70831	6.36818	3.77184	H7	-6.023 92	-4.28482	-2.155 83
HI3	0.46130	3.38167	6.24235	H8	-8.53391	1.77483	-2.155 83
H14	0.39427	-1.82298	4.18711	H9	-2.474 25	4.28483	-2.155 83
H15	-5.425 63	3.33868	-1.066 77	H 10	-4.249 09	0.0	-5.733 38
H16	-1.89263	7.85970	-1.48127	H 1^{\prime}	4.24909	0.0	5.73338
H17	2.10407	7.31922	2.77988	H3'	2.47425	-4.28483	2.15583
H18	4.68116	2.18776	3.37057	H4'	8.53391	-1.77483	2.15583
H5-6	-2.050 92	-3.964 85	1.75529	H5'	6.02392	4.28482	2.15583
H7-6	1.10171	-5.488 09	0.39716	H7 ${ }^{\prime}$	6.02392	-4.28482	-2.155 83
H15-16	-2.050 92	3.96485	-1.755 29	H8'	8.53391	1.77483	-2.155 83
H17-16	1.10171	5.48809	-0.39711	H9 ${ }^{\prime}$	2.47425	4.28483	-2.155 83
H8-9	3.04575	-2.234 05	0.04860	H $10{ }^{\prime}$	4.24909	0.0	-5.733 38
H18-9	3.04575	2.23405	0.04860	H2-12	0.0	1.65847	2.85137
				H6-16	0.0	-1.65847	-2.851 37
BI	1.22725	1.13061	-5.035 38	$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$			
B2	-1.227 27	-1.13062	-5.035 38	BI	11.54154	3.14669	4.34537
B3	-1.13061	1.22727	5.03538	BI'	14.10039	-3.14662	16.50574
B4	1.13062	-1.22725	5.03538	B2	10.80480	-0.30158	4.04512
B5	-1.834 51	1.99862	-3.808 74	B2'	14.83713	0.30165	16.08600
B6	1.83450	-1.998 63	-3.80874	B3	14.03734	1.31413	3.94920
B7	-1.998 62	-1.834 51	3.80874	B3'	11.60459	-1.314 06	16.90192
B8	1.99863	1.83452	3.80874	B4	13.46801	3.14957	6.82457
B9	1.03761	3.23136	-2.374 87	B4'	12.17392	-3.14950	14.02655
B10	-1.03761	-3.231 37	-2.374 87	B5	10.03400	1.80099	6.82666
BII	-3.231 36	1.03761	2.37487	B5'	15.60793	-1.800 92	14.02446
BI2	3.23137	-1.03760	2.37487	B6	10.59913	-1.49360	7.16236
BI3	3.30248	0.74402	-2.386 07	B6 ${ }^{\prime}$	15.04280	1.49367	13.68876
BI4	-3.302 48	-0.744 02	-2.38607	B7	13.26468	-1.72195	5.53389
B15	-0.744 01	3.30248	2.38607	B7'	12.37725	1.72202	15.31723
B16	0.74402	-3.302 48	2.38607	B8	15.28549	0.32174	6.99138
B17	-1.539 09	1.67403	-0.504 10	B8'	10.35644	-0.321 67	13.85974
B18	1.53909	-1.67403	-0.504 10	B9	12.46177	0.77413	9.04313
B19	-1.674 04	-1.539 09	0.50410	B9'	13.17220	-0.774 06	11.80090
B20	1.67404	1.53909	0.50410	B10	13.62463	-2.12982	8.46764
HI	2.08770	1.94774	-6.946 48	B10'	12.01730	2.12989	12.38348
H2	-2.087 72	-1.94775	-6.946 48	H1	10.27282	4.63659	3.23042
H3	-1.947 73	2.08771	6.94648	H1 ${ }^{\prime}$	15.36911	-4.636 50	17.62070
H4	1.94775	-2.08770	6.94648	H2	9.33984	-1.190 67	2.58774
H5	-3.077 91	3.57821	-4.81831	H2 ${ }^{\prime}$	16.29218	1.19071	18.26337
H6	3.07790	-3.57822	-4.81831	H3	15.61677	1.48898	2.35697
H7	-3.578 21	-3.07790	4.81831	H3'	10.02516	-1.48891	18.49413
H8	3.57823	3.07791	4.81831	H4	14.68100	4.71201	7.89594
H9	1.10645	5.47852	-2.45177	H4'	10.96093	-4.71194	12.95519
HIO	-1.10647	-5.478 53	-2.45177	H5	8.12280	2.60677	7.69752
Hil	-5.478 52	1.10645	2.45177	H5'	17.51910	-2.606 70	13.15360
Hi2	5.47853	-1.10646	2.45177	H6	17.13893	2.75364	13.17083
Hi3	5.54448	0.60912	-2.261 10	H6 ${ }^{\prime}$	8.71293	-2.627 37	7.62841
Hi4	-5.544 48	-0.609 12	-2.261 10	H7	14.01539	-3.495 64	4.37164
H 15	-0.609 11	5.54448	2.26110	H7 ${ }^{\prime}$	11.62653	3.49571	16.47945
H16	0.60911	-5.544 47	2.26110	H8	17.50188	0.69433	7.08696
	$p-\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$				8.14003	-0.69426	13.76416
B1	-4.249 09	${ }^{18} 0$	3.48459	H 10 $\mathrm{H} 10^{\prime}$	14.67265 10.96928	-4.00965 4.00972	9.12204 11.72907

III) mixes the same LMO's as those which were mixed in $\mathrm{B}_{8} \mathrm{H}_{12} .{ }^{24}$
There are several ways to view the bonding in the remaining molecular fragment. This region is similar to that in $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8},{ }^{25}$ except that $\mathrm{B}-\mathrm{H}_{\mathrm{b}}-\mathrm{B}$ bonds in $\mathrm{B}_{13} \mathrm{H}_{19}$ replace the $B-C$ single bonds in $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ and the $\mathrm{C}-\mathrm{C}$ single bond which would connect 9 and 5 is now a $9-4$ two-center bond to which 5 contributes weakly. The bonding in this fragment is not symmetric with respect to the local plane through 10 and 12 , as the $10-11$ single bond shows more two-center character than expected if the bonding in this fragment is analogous to that in $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$. Another, and new, comparison of this bonding region in $\mathrm{B}_{13} \mathrm{H}_{19}$ can be made to a hypothetical molecule, $\mathrm{B}_{7} \mathrm{H}_{13}$, shown in Figure 2c. Because all fused boranes are formed with a loss of two boron atoms, conceptually speaking, we therefore propose the structure in 2 c as a candidate for the parent of the B_{7} fragment in $\mathrm{B}_{13} \mathrm{H}_{19}$.

It is interesting to speculate on the relationship of the bonding to the atomic charges. We predicted that the region containing borons 3,4 , and 9 should be quite susceptible to electrophilic attack by our charge criteria. In agreement with this expectation, we find substantial charge density localized in this region as represented by the 4-9 bond and the $3-4-5$ bond. The latter bond has most of its density on 3 and 4 .
$\mathbf{B}_{14} \mathbf{H}_{\mathbf{2 0}}, \mathbf{B}_{14} \mathrm{H}_{20}$ has $C_{2 v}$ symmetry, and the LMO structure (Figure 3) also exhibits this symmetry. The bonding in each fragment is essentially that in $\mathrm{B}_{8} \mathrm{H}_{12}$ except that the necessarily symmetrical donation of the 4-5 bond to 1 and 1^{\prime} is lower in $\mathrm{B}_{14} \mathrm{H}_{20}$, being more like that in $\mathrm{B}_{9} \mathrm{H}_{15}$. The $\nu_{\text {max }}$ eigenvector (Table III) mixes bonds 2-8-7, 3-2, and $6-2$ (and their primed counterparts), just as is found for $\mathrm{B}_{8} \mathrm{H}_{12} .{ }^{24}$ In this molecule fusion does not substantially distort the bonding in the B_{8} fragments, most probably because the two-center $4-5$ bond in the fusion region can bond equally to 1 and 1^{\prime} through delocalization in a manner like that found in $\mathrm{B}_{8} \mathrm{H}_{12}$ and $\mathrm{B}_{9} \mathrm{H}_{15}$.
$\mathbf{B}_{16} \mathbf{H}_{\mathbf{2 0}}$. The $\mathrm{B}_{16} \mathrm{H}_{20}$ molecule has been discussed in a preliminary note. ${ }^{28}$ Its LMO's are shown in Figure 4a. The B_{8} region of this molecule has a bonding pattern identical with that found in $\mathrm{B}_{8} \mathrm{H}_{12}$ (Figure 1a). Comparison of the bonding in the B_{10} fragment of $\mathrm{B}_{16} \mathrm{H}_{20}$ with that of $\mathrm{B}_{10} \mathrm{H}_{14}$ (Figure 1b) shows quite a large disparity. On the other hand, this region of bonding in $\mathrm{B}_{16} \mathrm{H}_{20}$ shows a striking qualitative similarity to that found for $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$(Figure $4 b)$. Somewhat more delocalization on 6 from the 7-2 bond is seen in $\mathrm{B}_{16} \mathrm{H}_{20}$ while the 1-4-3 bond shows more population at 3 in $\mathrm{B}_{10} \mathrm{H}_{13}$ - than in $\mathrm{B}_{16} \mathrm{H}_{20}$. Also, some delocalization of the $1-4$ bond in $\mathrm{B}_{16} \mathrm{H}_{20}$ to 8 is evident. In going from $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$to $\mathrm{B}_{16} \mathrm{H}_{20}$ we note that the 4-9-8 bond has slightly decreased in population on 8 and the $10-4-3$ bond has decreased in population on 3. It is thus evident that the removal of the proton from $\mathrm{B}_{10} \mathrm{H}_{14}$ to form $\mathrm{B}_{10} \mathrm{H}_{13}$ - is similar to the addition of the B_{8} fragment to the B_{10} fragment to form $\mathrm{B}_{16} \mathrm{H}_{20}$ in its effect on the LMO's. Examination of the $\nu_{\text {max }}$ eigenvector for $\mathrm{B}_{16} \mathrm{H}_{20}$ shows the identical orbital mixing found in $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$, but not the orbital mixings found in $\mathrm{B}_{8} \mathrm{H}_{12}$. This reinforces our observation ${ }^{24}$ that the LMO's in the central regions of molecules with a framework like that of $\mathrm{B}_{10} \mathrm{H}_{14}$ are among the least well-determined LMO's known.
$\boldsymbol{n}-\mathbf{B}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 2}}$. The LMO structure for $n-\mathrm{B}_{18} \mathrm{H}_{22}$ (Figure 5) shows the inversion symmetry of the molecule. The two bonds that bridge the boron fragments are three-center bonds very similar to those found in $\mathrm{B}_{10} \mathrm{H}_{14}$. The bonding in the fragments themselves is somewhat similar to that found for $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$. Actually the basic bonding pattern is that of $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$except that the bonding pattern is
reflected through a line passing through 2 and 4, i.e., the bonding patterns at centers 1 and 3 are reversed from those in $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$. If, as in $\mathrm{B}_{16} \mathrm{H}_{20}$, the bridging fragment simply replaced the single bond in $\mathrm{B}_{10} \mathrm{H}_{13}{ }^{-}$, we would have expected 3 to be the fractional center in $n-\mathrm{B}_{18} \mathrm{H}_{22}$ rather than 1 . Other than this reversal about the $2-4$ line, the bonding is the same as that found for $\mathrm{B}_{10} \mathrm{H}_{13}-$ except for the slight delocalization of the 3-4-1 bond to 10 , which was also seen in $\mathrm{B}_{16} \mathrm{H}_{20}$.

The effect, therefore, of fusing the $\mathrm{B}_{10} \mathrm{H}_{14}$ fragment to $\mathrm{B}_{10} \mathrm{H}_{14}$ in the normal configuration is to cause the LMO's to undergo a distortion similar to that found in $\mathrm{B}_{10} \mathrm{H}_{13}$ but with the LMO's in a different region than expected. The fusion region does not have fractional bonds to 9 or 10 as found in $\mathrm{B}_{10} \mathrm{H}_{14}$ but has a more nearly equally apportioned three-center bond which appears to determine the remaining bonding pattern. An important result is that the 2-6-7 bond is thereby more equally apportioned. The consequences are that 1 becomes a fractional center, the 4-8-9 bond of $\mathrm{B}_{10} \mathrm{H}_{14}$ becomes a $4-8-1$ bond in $n-\mathrm{B}_{18} \mathrm{H}_{22}$, and the $2-5-6$ bond of $\mathrm{B}_{10} \mathrm{H}_{14}$ becomes a $2-5$ bond being somewhat delocalized on 1 and 6 .
$i-\mathrm{B}_{18} \mathrm{H}_{22}$. Fusion of two $\mathrm{B}_{10} \mathrm{H}_{14}$ fragments in a different geometry as in $i-\mathrm{B}_{18} \mathrm{H}_{22}$ allows us to examine how the bonding patterns change with geometry. The LMO's for i $\mathrm{B}_{18} \mathrm{H}_{22}$ are shown in Figure 6 and again the LMO structure shows the molecular symmetry, here C_{2}. In contrast to the results just noted for $n-\mathrm{B}_{18} \mathrm{H}_{22}$, we find the LMO's in i $\mathrm{B}_{18} \mathrm{H}_{22}$ to be very similar to those found in $\mathrm{B}_{10} \mathrm{H}_{14}$. The only differences occur, as expected, in the fragment fusion region, where the $4-10-9$ bond is not fractional to 9 as had been found in $\mathrm{B}_{10} \mathrm{H}_{14}$. As a consequence, the 4-8-9 bond has some population on 3 , and 9 participates in the bond to a lesser extent (0.33 e) than in $\mathrm{B}_{10} \mathrm{H}_{14}$. Thus, introduction of the bridging fragment in $i-\mathrm{B}_{18} \mathrm{H}_{22}$ yields the same sort of bonding in the fusion region as found for $n-\mathrm{B}_{18} \mathrm{H}_{22}$ but the perturbation is not carried into the regions of the molecule removed from the fusion region to the same extent as in n $\mathrm{B}_{18} \mathrm{H}_{22}$ and $\mathrm{B}_{16} \mathrm{H}_{20}$.

The $\nu_{\max }$ eigenvector for $i-\mathrm{B}_{18} \mathrm{H}_{22}$ mixes the 2-6-7, 2-$5-6$, and 1-2-3 bonds, or only half of those mixed in the $\nu_{\max }$ eigenvector of $\mathrm{B}_{10} \mathrm{H}_{14}$. For $n-\mathrm{B}_{18} \mathrm{H}_{22}$ the $\nu_{\text {max }}$ eigenvector mixes the corresponding three bonds found near the fusion region (Table III).
$\mathbf{B}_{20} \mathbf{H}_{16}$. The molecule $\mathrm{B}_{20} \mathrm{H}_{16}$ is a closo borane formed by the bridging of two open fragments. The LMO structure (Figure 7a) shows approximate $D_{2 d}$ symmetry. A simplified structure is shown in Figure 7b. The most striking feature of the bonding is the large number of essentially two-center bonds, as a result of which eight centers ($9-16$) have a total of only three bonds each. However, each of these eight centers contributes 0.22 e to each of two additional two-center bonds. Four other centers (5-8) are normal centers, each having four bonds, and each participating to the extent of 0.22 e in the cap bonds ($1-2$ and 3-4).

Comparison of the LMO's for $\mathrm{B}_{20} \mathrm{H}_{16}$ with those for $\mathrm{B}_{10} \mathrm{H}_{14}$ (Figure 1b) shows that the $\mathrm{B}_{20} \mathrm{H}_{16}$ fragment structures are not at all similar to those of $\mathrm{B}_{10} \mathrm{H}_{14}$. Instead, the pattern of LMO's shown by $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ (Figure 7d) resembles that present in the upper and lower halves of $\mathrm{B}_{20} \mathrm{H}_{16}$. However, the bonding in $\mathrm{B}_{20} \mathrm{H}_{16}$ resembles more the topological structure which has an open three-center bond (Figure 7d) than the structure found by the Boys localization (Figure 7c). Bridging of the two $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$ groups to form $\mathrm{B}_{20} \mathrm{H}_{16}$ requires the loss of two terminal B- H_{1} bonds and the dissolution of an open three-center bond for each boron in the incipient central ring of four borons. Thus, there is a nominal addition of 2.67 at each of these four boron atoms. Two of these electrons go into forming the two two-center
bonds that fuse the two fragments. The remaining 0.67 e contributes to the formation of the other fusion bond, which connects each of these borons lacking terminal hydrogens to the two borons that lose a bridge hydrogen as H^{-}in forming a new three-center $\mathrm{B}-\mathrm{B}-\mathrm{B}$ bond (e.g., 9-13-20). The $\nu_{\text {max }}$ eigenvector for $\mathrm{B}_{20} \mathrm{H}_{16}$ mixes the cap single bonds with the four adjacent three-center $\mathrm{B}-\mathrm{B}-\mathrm{B}$ bonds. A similar mixing was noted in $\mathrm{B}_{10} \mathrm{H}_{14}{ }^{2-}$.

We note that each of the boron atoms 9-16 having only three bonds are the most positive centers as determined by group and atomic charges. Further, the centers 5-8 are less negative than are centers $1-4$, the centers involved in the bonds that donate to 5-8.
$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{\mathbf{2}}$. The two isomers of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ are the only known bridged boranes that are composed of closo borane subunits. The LMO's for these two isomers give striking confirmation of this relationship. The LMO structure for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (Figure 8) shows C_{i} symmetry.

Before discussing the LMO's for this molecule, we shall first examine the bonding in the parent $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ ion. The two localized structures for $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ depicted in Figure 1d and Figure le are both relative maxima on the SOS surface. We denote them as $4,4,3$ (Figure 1d) or 3,5,3 (Figure le) structures, depending on the number bonds which join the apices to the equatorial borons (the first and third integers) and the number joining the two equatorial rings (the second integer). Attempts to interconvert the two structures by following the $\nu_{\max }$ eigenvector ${ }^{25}$ in all cases lead instead to a symmetry related structure of the same type.

The LMO's of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ are essentially identical with those of the $4,4,3$ structure for $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ given in Figure 1d. The only change in the LMO's is that the $2-6-7$ bond in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ is not fractionally populated on 7 as had been found in $\mathrm{B}_{10} \mathrm{H}_{10} 0^{2-}$ and the $2-5-1$ bond is fractional to 1 in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. Even the delocalization of the 1-3-2 bond to 7 in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ is reproduced in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. The bridging between the two fragments is accomplished by two three-center bonds which replace the $9-10$ and $9^{\prime}-10^{\prime}$ bonds in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$. Thus the only changes in going from two $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ ions to $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ are the formal loss of two hydride ions, and the formation of the two bridging three-center $\mathrm{B}-\mathrm{B}-\mathrm{B}$ bonds between the newly electron deficient centers from the precursor two-center $\mathrm{B}-\mathrm{B}$ bonds.

The orbitals of the $4,4,3$ structure for $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ are arranged perfectly for the bonding in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ since the single bond (9-10) lies in the C_{s} plane of the $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ LMO structure. The same plane is essentially retained in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, and the same bonding can and does occur. As we have noted before, ${ }^{24}$ borons on the planes of symmetry that describe the LMO's are often fractional centers, for example in $\mathrm{B}_{11} \mathrm{H}_{13}{ }^{2-}$ and $\mathrm{C}_{2} \mathrm{~B}_{5} \mathrm{H}_{7}$. The total wave function describing the LMO's has the correct molecular symmetry but in our figures using truncated LMO's, the apparent symmetry may be lower. We note that the fractional center 7 is also a very negative center according to its inner-shell eigenvalue and atomic charge in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$.

Photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. The two B_{10} units of photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ are bound together by bridge hydrogens rather than via the boron bridging found in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. The LMO's for the photoisomer are shown in Figure 9. Here we find that the LMO structure is based on $3,5.3 \mathrm{~B}_{10} \mathrm{H}_{10}{ }^{2-}$ subunits (Figure le). One slight variation in the $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ bonding is that the ap-ical-equatorial 7-10 single bond delocalizes away from the bridge hydrogen site 6 in photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2}$, rather than equally to 8 and 6 as is in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$. The two bonds having populations of less than 0.5 e to 7 in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ now show less bonding to 6 and 8 in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ with a concomitant rise in the populations of these bonds on 7. Also, less delocalization to 3 is found in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ than in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$.

The LMO structures of the B_{10} fragments in photo$\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ are related by a plane of symmetry. Five localizations (four from random starting points and one starting from the CMO's) were carried out. In two cases the C_{s} structure was found after 20 iterations. For the other localizations for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ it was necessary to use the eigenvector procedure in order to complete the localization. After a series of 20-2-10-3-5 (20 2×2 iterations, 2 eigenvector iterations, 102×2 iterations, etc.), the random starting structures yielded the C_{s} LMO structure. The final LMO structure obtained in this way from the highly delocalized CMO's was still not well converged. Even an additional 10-2-15-2-5 series of iterations did not achieve complete convergence, but the structure was definitely tending toward the C_{s} LMO structure. Thus, contrary to our original comment, ${ }^{28}$ we do not find multiple maxima on the SOS localization surface for photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. This result clearly demonstrates the utility of the recently formulated eigenvector procedure in determining whether multiple maxima are present on the SOS surface.

Thus, the placement of the bridge hydrogens determines which set of the $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ LMO's will occur in photo$\mathrm{B}_{20} \mathrm{H}_{18}$, as had the joining by boron bridging in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. The LMO's are chosen so that a single bond is placed between borons that are attached to bridging hydrogens. Given these two bonds, the remaining LMO's fall into one of the equivalent symmetry orientations for the $3,5,3$ $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ subunits.

The molecular coordinates given in Table IV were added at the suggestion of a referee.

Acknowledgment. We wish to acknowledge support of this research by the Office of Naval Research. We thank R. Schaeffer and J. Huffman for sending us coordinates prior to publication. D.A.D. thanks the Parker Foundation for a fellowship,

References and Notes

(1) W. N. Llpscomb, 'Boron Hydrides'", W. A. Benjamin, New York, N.Y., 1963.
(2) W. N. Lipscomb, Acc. Chem. Res., 6, 257 (1973).
(3) J. H. Hall, Jr., D. S. Marynick, and W. N. Lipscomb, J. Am. Chem. Soc., 96, 770 (1974).
(4) (a) T. A. Haigren and W. N. Lipscomb, J. Chem. Phys., 58, 1569 (1973); (b) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill, New York, N.Y., 1970.
(5) T. A. Halgren, D. A. Kleier, J. H. Hall, Jr., L. D. Brown, and W. N. Lipscomb, to be submitted.
(6) $\mathrm{B}_{13} \mathrm{H}_{19}$: J. C. Huffman, D. C. Moody, J. W. Rathke, and R. Schaefer, J. Chem. Soc., Chem. Commun., 308 (1973); J. C. Huffman, private communication.
(7) $\mathrm{B}_{14} \mathrm{H}_{20}$: J. C. Huffman, D. C. Moody, and R. Schaeffer, J. Am. Chem. Soc., 97, 1621 (1975).
(8) $\mathrm{B}_{16} \mathrm{H}_{20}$: L. B. Friedman, R. E. Cook, and M. D. Glick, Inorg. Chem., 9, 1452 (1970). The angle β is incorrectly given in the paper and should be 79.17°.
(9) $n-B_{18} H_{22}$: P. G. Simpson and W. N. Lipscomb, Proc. Natl. Acad. Sci. U.S.A., 48. 1490 (1962); P. G. Simpson and W. N. Lipscomb, J. Chem. Phys., 39, 26 (1963).
(10) $\mathrm{i}_{18} \mathrm{H}_{22}$: P. G. Simpson, K. Folting, and W. N. Lipscomb, J. Am. Chem. Soc., 85, 1879 (1963); P. G. Simpson, K. Folting, R. D. Dobrott, and W. N. Lipscomb, J. Chem. Phys., 39, 2339 (1963).
(11) $\mathrm{B}_{20} \mathrm{H}_{16}:$ R. D. Dobrott, L. B. Friedman, and W. N. Lipscomb, J. Chem. Phys., 40, 866 (1964).
(12) $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$: C. H. Schwalbe and W. N. Lipscomb, Inorg. Chem., 10, 15 (1971).
(13) Photo- $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$: B. G. DeBoer, A. Zalkin, and D. H. Templeton, Inorg. Chem., 7, 1085 (1968).
(14) R. L. Pilling, M. F. Hawthorne, and E. A. Pier, J. Am. Chem. Soc., 86, 3568 (1964).
(15) R. L. Pilling and M. F. Hawthorne, J. Am. Chem. Soc., 88, 3873 (1966).
(16) (a) L. B. Friedman, R. D. Dobrott, and W. N. Lipscomb, J. Am. Chem Soc., 85, 3505 (1963); (b) N. E. Miller, J. A. Forstner, and E. L. Muetterties, Inorg. Chem., 3, 1690 (1964).
(17) F. P. Olsen, R. C. Vasavada, and M. F. Hawthorne, J. Am. Chem. Soc., 90, 3946 (1968).
(18) A. Kaczmarcyzk, R. D. Dobrott, and W. N. Lipscomb, Proc. Natl. Acad. Sci. U.S.A., 48, 729 (1962).
(19) A. R. Pitochelli and M. F. Hawthorne, J. Am. Chem. Soc., 84, 3218 (1962).
(20) M. F. Hawthorne and R. L. Pilling, J. Am. Chem. Soc., 88, 3873 (1966).
(21) H. R. Bachmann, H. Noth, R. Rinek, and K. C. Kompa, Chem. Phys. Lett., 29, 627 (1974).
(22) J. Plesek, S. Hermanek, B. Stibrand, and F. Hanousek, Collect. Czech. Chem. Commun., 32, 1095 (1967); 33, 699 (1968).
(23) J. Rathke and R. Schaeffer, Inorg. Chem., to be published.
(24) J. H. Hall, D. A. Dixon, D. A. Kleier, T. A. Halgren, L. D. Brown, and W. N. Lipscomb, J. Am. Chem. Soc., 97, 4202 (1975).
(25) D. A. Kleir, T. A. Halgren, J. H. Hall, and W. N. Lipscomb, J. Chem. Phys., 61, 3905 (1974).
(26) (a) S. F. Boys, Rev. Mod. Phys., 32, 296 (1960); (b) J. M. Foster and S. F. Boys, ibid., 32, 300 (1960); (c) S. F. Boys, "Quantum Theory of Atoms, Molecules and the Solid State", P.-O. Löwdin, Ed., Academic

Press, New York, N.Y., 1966, p 253.
(27) C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35, 457 (1963)
(28) D. A. Dixon, D. A. Kleier, T. A. Halgren, and W. N. Lipscomb, J. Am. Chem. Soc., 96, 2293 (1974)
(29) D. A. Dixon, J. H. Hall, D. A. Kleier, T. A. Halgren, and W. N. Lipscomb, to be submitted.
(30) E. Switkes, R. M. Stevens, W. N. Lipscomb, and M. D. Newton, J. Chem. Phys., 51, 2085 (1969).
(31) T. A. Halgren, R. J. Anderson, D. S. Jones, and W. N. Lipscomb, Chem. Phys. Lett., 8, 547 (1971).
(32) T. A. Halgren, to be published.
(33) R. L. Sneath and L. J. Todd, U.S. National Technical Information Service, AD Rep. No. 745355 (1972); Chem. Abstr., 77, 172107w (1972).

Vibrational Spectra and Structure of Methylberyllium Borohydride

Louis J. Allamandola and Joseph W. Nibler*
Contribution from the Department of Chemistry, Oregon State University, Corvallis, Oregon 97331. Received August 8, 1975

Abstract

Vapor density measurements of unsaturated methylberyllium borohydride at 1.2 Torr show that this species is predominantly dimeric in the gas phase. It was found that the major features of the infrared spectrum of the annealed solid agree with those of the vapor, implying that the solid is made up of dimeric units also. Infrared and Raman spectra further show the borohydride moiety is attached to beryllium by a double hydrogen bridge. From comparison with Raman spectra of solid dimethylberyllium, known to contain only methyl bridges, it is concluded that methylberyllium borohydride contains two bridging methyl groups. The spectra are consistent with $C_{2 h}$ molecular symmetry and vibrational assignments of $\left(\mathrm{CH}_{3} \mathrm{BeBH}\right)_{2}$ and $\left(\mathrm{CH}_{3} \mathrm{Be}^{10} \mathrm{BD}_{4}\right)_{2}$ are presented on this basis. Vibrations characteristic of $\mathrm{BeH}_{2} \mathrm{BH}_{2}$ and bridging methyl groups are identified and compared with analogous compounds. With the exception of the deformation modes, the methyl vibrations are generally quite close to those of terminal methyl groups. The deformation frequencies are significantly higher for bridged methyls and thus serve as a basis for identification of this type of bonding.

Recent studies of metal borohydrides have shown a variety of structures for these electron deficient compounds, with both double $\left[\mathrm{Al}\left(\mathrm{BH}_{4}\right)_{3},{ }^{1} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BeBH}_{4}\right]^{2}$ and triple $\left[\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2},{ }^{3,4} \mathrm{Zr}\left(\mathrm{BH}_{4}\right)_{4}{ }^{5}\right]$ hydrogen bridges being observed. Perhaps the most unusual metal borohydride yet reported is $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$, which is believed to exist in two vapor forms, one with double hydrogen bridges and a more stable linear $C_{3 c}$ form containing triple hydrogen bridges, $\mathrm{HBH}_{3} \mathrm{BeH}_{3} \mathrm{BH}$. For the solid, however, x -ray ${ }^{6}$ and spectroscopic ${ }^{7}$ studies reveal a helical polymeric structure of linked ions: $\cdots\left(\mathrm{BH}_{4}^{-}\right) \cdots\left(\mathrm{H}_{2} \mathrm{BH}_{2} \mathrm{Be}^{+}\right) \cdots\left(\mathrm{BH}_{4}{ }^{-}\right) \cdots$. This borderline tendency of $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$ toward an ionic structure is consistent with the fact that all the other group 2 (and group 1) borohydrides are ionic salts. Such unusual bonding and structural changes might well be expected for other metal borohydrides, and a number of those which are expected to lie between the ionic and covalent extremes have recently been investigated. One such compound is methylzinc borohydride which has been shown to convert from a double hydrogen bridged structure in the vapor phase to an ionic form $\mathrm{CH}_{3} \mathrm{Zn}^{+} \ldots \mathrm{BH}_{4}{ }^{-}$in the solid. ${ }^{8}$ Similarly, $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ is believed to change from a tetrahedral, triple-bridged vapor form to a polymeric ionic form involving both $\mathrm{BH}_{4}{ }^{-}$ions and double bridged $\left(\mathrm{H}_{2} \mathrm{BH}_{2} \mathrm{U}\right)$ units in the solid phase. ${ }^{9}$

At present a clear picture has not emerged as to which metal atom properties dominate in determining the structures (ionic or covalent) or the type of hydrogen bridging (double or triple) present in metal borohydrides. As part of a continuing effort in this direction, we report here the spectral investigation of a $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$ derivative: methylberyllium borohydride, $\mathrm{CH}_{3} \mathrm{BeBH}_{4}$. The gas-phase infrared spectrum of this molecule has been reported previously by

Cook and Morgan ${ }^{10}$ and they concluded that the vapor consists of a mixture of monomer and methyl-bridged dimer. A freezing point depression experiment showed the molecule to be dimeric in benzene. In our study we have examined this equilibrium by vapor density measurements and by trapping the vapor at low pressure using matrix isolation techniques. Our intention was to obtain infrared and Raman spectra of both monomer and dimer but, as described below, it was not possible to obtain significant amounts of the monomer. Thus this report deals primarily with the spectrum and structure of dimeric $\mathrm{CH}_{3} \mathrm{BeBH}_{4}$ in the solid phase.

Experimental Section

The samples of $\mathrm{CH}_{3} \mathrm{BeBH}_{4}, \mathrm{CH}_{3} \mathrm{Be}^{10} \mathrm{BD}_{4}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Be}$ were prepared by Dr. Thomas Cook and the syntheses have been described previously. ${ }^{10}$ Since these compounds are pyrophoric and poisonous, all sample handling was done in a greaseless vacuum system in a hood. The vapor density at $24^{\circ} \mathrm{C}$ was measured at two pressures using a Granville Phillips capacitance manometer and an inert oil (Halocarbon Products Corp., series 10-25) manometer. At saturation, $129.4 \pm 0.5 \mathrm{mg}$ of $\mathrm{CH}_{3} \mathrm{BeBH}_{4}$ gave a pressure of 5.6 ± 0.2 Torr in 5.7 ± 0.11., yielding a molecular weight of $75 \pm$ $5 \mathrm{~g} / \mathrm{mol}$ ($\mathrm{mol} w t \mathrm{CH}_{3} \mathrm{BeBH}_{4}=39 \mathrm{~g} / \mathrm{mol}$). At lower pressures, $25.2 \pm 0.5 \mathrm{mg}$ of $\mathrm{CH}_{3} \mathrm{Be}^{10} \mathrm{BD}_{4}$ in a volume of 5.89 ± 0.061. gave a pressure of 1.2 ± 0.1 Torr, from which the molecular weight is 69 $\pm 8 \mathrm{~g} / \mathrm{mol}$ (mol wt CH ${ }_{3} \mathrm{Be}^{10} \mathrm{BD}_{4}=42 \mathrm{~g} / \mathrm{mol}$). Thus the material is largely dimeric in the vapor phase even under nonsaturated conditions.

Infrared and Raman spectra of films sublimed onto a polished aluminum block cooled by a Displex closed cycle cooler were obtained as follows. The samples were annealed to about 200 K at least three times until the infrared spectra no longer changed. In-

[^0]: ${ }^{a}$ Numbers in parentheses correspond to equivalent centers. ${ }^{b}$ Units

[^1]: a Inner shells were not included in the limited second-derivative test. ${ }^{h}$ There are two degenerate eigenvectors. The other eigenvector corresponds to that composed of the bonds given in parentheses. "There are two degenerate eigenvectors. The second eigenvector just has a different phase from the first. ${ }^{d}$ There are two degenerate eigenvectors of which only the unprimed one is given. The other corresponds to that given with primes on all numbers.

